
IoT Device Firmware Update through Cloud
Over-the-Air Interfaces

Rasmus Henriksen
henriksen1103@cs.ucla.edu

University of California, Los Angeles
Los Angeles, CA, USA

Zhi Li
mikelili@ucla.edu

University of California, Los Angeles
Los Angeles, CA, USA

Aditya Mishra
admish@ucla.edu

University of California, Los Angeles
Los Angeles, CA, USA

Turan Vural
turan@g.ucla.edu

University of California, Los Angeles
Los Angeles, CA, USA

ACM Reference Format:
Rasmus Henriksen, Zhi Li, Aditya Mishra, and Turan Vural. 2022.
IoTDevice Firmware Update through CloudOver-the-Air Interfaces.
In CS 219 Spring 2023: Cloud Computing, March–June, 2023, Los
Angeles, CA. ACM, New York, NY, USA, 7 pages. https://doi.org/0.
0/0.0

ABSTRACT
Firmware is an integral part of devices, which refers to the
software that instructs the hardware to function and commu-
nicate with other software running on a device. Firmware
updates are necessary to address security or performance
issues during the lifetime of IoT (Internet of Things) devices.
Over-the-Air (OTA) updates enable firmware updates to be
completed remotely and securely, without the need to re-
move devices from their deployment.
This paper introduces a LoRa (Long Range) OTA proce-

dure to enable cloud-based resources to initiate and com-
plete updates to LoRa-connected IoT devices. This differs
from existing OTA over LoRa solutions by allowing the LoRa
gateway to simply push updates from upstream servers man-
aging the deployment of devices. Upstream servers expose
APIs to allow devices communicating over a TTS instance
to initiate the OTA procedure. A PyCom FiPy was chosen as
the IoT device on which to perform OTA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CS 219 Spring 2023, March–June, 2023, Los Angeles, CA
© 2022 Association for Computing Machinery.
ACM ISBN XXXXX. . . $0.00
https://doi.org/0.0/0.0

Our code is included in a Github Repo [7] that others can
build off of our initial LoRa OTA protocol.

1 INTRODUCTION
1.1 Over-the-Air Update (OTA)
Over-the-Air (OTA) updates is a wireless update or delivery
of new software, firmware or other data to mobile devices
such as smartphones, tablets, and Internet-of-Things (IoT)
device. The growing popularity on mobile devices in indus-
try and commerce has increased the need for keeping large
deployments of mobile devices up-to-date with minimal over-
head.
Currently, there are no high-level frameworks or APIs

enabling cloud-orchestrated OTA over LoRaWAN. Such a
framework would allow mission-critical security patching
while maintaining the utility of existing IoT fleet manage-
ment platforms. Thus, the primary goal of this project is to
implement a LoRa OTA protocol that enables updates from
the cloud to be pushed to a LoRa device.

1.1.1 WiFiOTA. A generalized OTA firmware update over
WiFi follows these steps:

(1) Device connects with server using WiFi
(2) Device requests an update to be initiated
(3) Servers sends a manifest listing the files operations to

be carried out
(4) Device receives manifest and executes file operations
(a) In the case of an update or a new file, the device

requests the file from the server
(5) Write firmware to OTA partition on device and set flag

to boot from OTA
(6) Reset machine to complete the firmware update

A more detailed approach is highlighted in Figure 1 below.

https://doi.org/0.0/0.0
https://doi.org/0.0/0.0
https://doi.org/0.0/0.0

CS 219 Spring 2023, March–June, 2023, Los Angeles, CA Rasmus Henriksen, Zhi Li, Aditya Mishra, and Turan Vural

Figure 1: WiFi OTA procedure for PyCom devices

2 BACKGROUND
This section describes the technologies used to complete a
cloud-supported OTA update over LoRa.

2.1 LoRa
LoRa (Long Range) is a communications protocol primarily
used for Internet of Things (IoT) devices, able to commu-
nicate over ranges approximately 3 miles in urban areas,
10 miles in rural areas [1]. Downstream devices communi-
cating over LoRa can operate for years, hibernating while
not communicating and pushing a minimal amount of bytes
upstream at a low power only when necessary.
LoRa uses chirp spread spectrum, using a modulation

scheme that encodes data in chirps. The transmitted chirp

signals cover a wide frequency range, increasing the signal-
to-noise ratio (SNR), the likelihood of the signal to be re-
ceived above the noise floor. This allows for LoRa signals to
maintain reliability while being sent at a low power.

The high SNR for low-power transmissions contributes to
LoRa’s use case for IoT devices needing to operate for long
periods of time without depleting on-board power sources
[2]. These low power requirements and high range make
it an attractive communication option for IoT deployments
in agriculture and heavy industries. Furthermore, these en-
vironments are often unfriendly to weak radio signals and
lack pre-existing network connectivity over other means (i.e.
WiFi or cellular). Utilizing LoRa IoT devices has been shown
to save farmer’s money and increase yields by providing
better crop monitoring. [3]

2.2 LoRaWAN
LoRaWAN is a MAC-layer communication protocol that pro-
vides standardized connectivity and security mechanisms for
LoRa-based networks. It enables communication between
IoT devices and LoRaWAN gateways while ensuring inter-
operability and scalability. LoRaWAN incorporates adaptive
data rate (ADR) functionality, dynamically optimizing trans-
mission parameters for reliable and efficient communication
in varying signal conditions.

2.3 The Things Stack
The Things Stack is a LoRaWAN network server that man-
ages applications, end devices, and LoRa gateways. End-
devices are enrolled in TTS-managed applications which
describes the authentication of such devices as well as the
handling of uplink and downlink communication. Enrolled
devices are authenticated by TTS when joining the LoRa net-
work. Uplink messages can be forwarded further upstream
from TTS to cloud applications via webhooks. Downlink
communications can be forwarded from cloud applications
to TTS. Communications in our experiments were unen-
crypted and encoded in base 64.

3 DESIGN
This section describes the transport through which an OTA
update from cloud through LoRa occurs. It explains the func-
tionality of the communication that takes place over LoRa
and WiFi and its place in the architecture of our proof of
concept. Figure 2 depicts the design at a high level.

Uplink communication describes communication from an
IoT or downstream device to a cloud server. Downlink com-
munication describes a communication from a cloud server
to a downstream device.

IoT Device Firmware Update through Cloud Over-the-Air Interfaces CS 219 Spring 2023, March–June, 2023, Los Angeles, CA

3.1 LoRaWAN
Uplink communication is initiated by the downstream device
and occurs over LoRa. Communication is received by a LoRa
gateway, which forwards communication upstream. The FiPy
end device operates as a node, the LoRaWAN protocol for
wireless data transmission at a frequency of 914.9 MHz.

The communication within the LoRaWAN section is initi-
ated when the FiPy end device undergoes a pre-scheduled
firmware update event. To establish connectivity, the de-
vice initiates an Over-The-Air Activation (OTAA) process
by transmitting a Join-request message to the LoRa gateway.
Upon receiving the Join-request, the gateway responds with
a Join-accept message, enabling the FiPy end device to create
a LoRa socket for subsequent data transmission.
Inherent to the LoRaWAN protocol, the FiPy end device

primarily operates in an uplink mode, where it periodically
sends data to the gateway. After transmitting an uplink mes-
sage, the device briefly listens for any incoming messages,
including ACK (acknowledgment), NACK (negative acknowl-
edgment), and downlink messages. This listening period en-
sures bidirectional communication while optimizing power
resources.
The LoRa gateway, hosted on a dedicated server station,

remains vigilant, continuously monitoring LoRa messages.
It forwards all received LoRa communications to the TTS
infrastructure using the Universal Serial Bus (USB) proto-
col. The gateway awaits responses from the TTS, including
downlink messages, ACK, or NACK, which it then broadcasts
to the registered devices.

3.2 IEEE 802.11
The standard IEEE 802.11 section of our design capitalizes
on the pervasive internet protocol, facilitating seamless con-
nectivity and interoperability. This section harnesses the
TTS infrastructure and a Flask-based web application back-
end, enabling efficient data processing, management, and
function handling.

Upon receiving a join request from a device, the TTS pro-
cess the request, originating from the LoRa gateway, to verify
the device’s registration. A successful accept event triggers
the TTS to invoke the Join-accept webhook function, em-
ploying an HTTP POSTmethod to send the join-accept event
to our Flask-based web application backend. The backend
application, upon receiving the join-accept event, responds
with a 200 code to confirm the successful registration.

The TTS triggers different webhook paths upon receiv-
ing various communications from devices. For instance, an
uplink message from a LoRa device invokes the "uplink"
webhook path, with the message subsequently forwarded to
the backend via a POST request. The Flask-based web appli-
cation backend, upon receiving the POST request, responds

accordingly based on the path of the request and the content
of the transmitted data.
In summary, the design of our LoRa OTA system encom-

passes the LoRaWAN and IEEE 802.11 sections, each carefully
engineered to ensure seamless communication, robust con-
nectivity, and effective data management. The LoRaWAN
section facilitates wireless communication between the FiPy
end device and the LoRa gateway, while the IEEE 802.11 sec-
tion leverages the TTS infrastructure and Flask-based web
application backend for efficient data processing and visu-
alization. This synergistic integration empowers our LoRa
OTA system with the ability to seamlessly transmit, manage,
and analyze data, enabling a wide range of IoT applications.

Figure 2: LoRa OTA Design

4 IMPLEMENTATION
We can support OTA on the cloud and have provided an API
for IoT devices. We created the current LoRa firmware to sup-
port OTA over LoRa and we also wrote a demo application
to initiate OTA.
So far, we have finished the creation of a LoRa OTA pro-

tocol that can send files from a WiFi Server to a LoRa micro-
controller.

We have defined a LoRa OTA protocol that dictates what
the device, gateway and server need to do to ensure suc-
cessful firmware transfer. Moreover, since no preexisting,
formalized OTA Protocol existed - our high-level ideas (i.e
OTA Trigger Standardization, Firmware Indexing, etc.) that
serve as the foundation of our work can be extended to
OTA implementation with other Wireless Communication
methods as well. It was necessary to experiment with the im-
plementation of the LoRa OTA Protocol as a 1 to 1 mapping
of the WiFi OTA Protocol was not possible (as discussed in
5.1).

We have defined the format for triggers, ACKs and NACKs
as they did not exist before. The Wifi OTA code that served
as a basis for our project used an arbitrary but known set
of bytes as a trigger. We extend this idea to create ACKs
and NACKs to enable reliable transmission of data in the
LoRa-Gateway-Server Network.

CS 219 Spring 2023, March–June, 2023, Los Angeles, CA Rasmus Henriksen, Zhi Li, Aditya Mishra, and Turan Vural

Figure 3: A comparison of our transmitted file (left)
with our original file (right) using Python’s filecmp
module

Because LoRa does not have retransmission, we defined a
protocol to initiate retransmission when the TTS to device
connection fails (which is unfortunately frequent). The re-
transmission is triggered in the event of a socket timeout
(configured by user) in which case the LoRa device will trans-
mit a NACK to the server. We have also explored the effect of
different socket timeout values on total transmission times.
Once the server receives the NACK it will retransmit the
previously sent packet.
We have detailed how the server should segment and

index files (the indexing process is currently evolving) to
ensure that all OTA data is sent to LoRa Device. We have
also experimented with the effect of varying segment sizes
on total transmission time of a file.
We have been able to write firmware data to the OTA

Firmware Partition on the FiPy microcontroller. This process
requires writing the combined chunks to protected device
memory.
We have finished the transfer of a 1.6 Kb, 16Kb and a

100 Kb firmware file from a server to our LoRa device. We
were able to compare the received file on the device with the
transmitted file on the server and see that they are identical.
Figure 3 showcases one such comparison.

4.1 Feasibility of WiFi OTA Approach for
LoRa OTA

We initially attempted to implement a 1 to 1 mapping of
the WiFi OTA Process to our LoRa OTA implementation.
However, this was not possible.

Due to LoRa’s Unreliable Transmission and slow data rate,
the sending of the manifest, application code and firmware
was infeasible.

The LoRa Gateway had to be physically shared with other
groups and additionally, the updates take hours without
considering retransmissions. This made running our experi-
ments (as discussed in the evaluation section) difficult.

Finally, there is high latency between device and the gate-
way, the gateway and TTS and with TTS and the Server. This
made us have some departures from theWiFi OTA Approach
as a whole.

4.2 Implementation Architecture
The diagram detailing our implementation architecture is
shown in Figure 4. The left-half (anything in green) show-
cases parts of the solution that use LoRaWAN, the right-half
(anything in red) showcases parts of the solution that use
WiFi. In the middle (anything in purple) is TTS and the LoRa
Gateway which permit LoRaWAN and WiFi to communicate.
Arrows pointing to the right indicate upstream commu-

nication, arrows pointing to the left indicate downstream
communication. At a high level, communication is done be-
tween:

(1) The webserver and the LoRa Gateway/TTS
(2) The LoRa Gateway/TTS and the webhook/filesystem

The LoRa gateway/TTS1 serves as the bridge between the
webserver and webhooks + filesystem. In our experiment,
we enrolled our end device in an application on TTS. The
device sends a join request and authenticates using Over-
the-Air-Authentication (OTAA).

The webserver transmits the firmware version, ACKs and
NACKs, the webhooks transmit firmware length and seg-
mented data packets. TTS then forwards the data from the
webserver to the webhook and vice versa.

Uplink communication is initiated from the end device
and sent to the TTS-managed LoRa gateway. We chose to use
sockets to send data upstream. Lower-level on-board imple-
mentations are available if future projects wish to exercise
more control over the board’s transmissions. The LoRa gate-
way forwards the received packet over WiFi to TTS, where it
can be processed by the TTS application. In our application’s
configuration, we have webhooks configured to be sent to a
webserver on certain events that are triggered when the TTS
receives a communication from the end device. We enabled
two webhooks to be called: one on a join-accept event, and
one on the receipt of any uplink communication from the
device.
On the join-accept webhook, the webserver prepares the

file to be transported to the device. This includes clearing
of any caches or data structures used in previous transmis-
sions and parsing the file into 63-byte chunks to be sent. A
downlink transmission is sent to TTS to clear the scheduled
transmission buffer.

Downlink transmissions are initiated from the webserver
or TTS and are pushed over LoRa via TTS and the gateway
to the end device. TTS allows for calls via a REST API to
schedule downlink calls from applications further upstream.
Downlink messages from upstream entities are pushed to a
queue in TTS and are sent when possible.

1Although the gateway and TTS are two separate components, they gateway
operation is abstracted by TTS’s role as a network manager. When we refer
to TTS in this section, we include the function of the LoRa gateway.

IoT Device Firmware Update through Cloud Over-the-Air Interfaces CS 219 Spring 2023, March–June, 2023, Los Angeles, CA

Figure 4: Solution architecture for LoRa OTA show-
casing the interaction between the webserver, LoRa
gateway and the webhook + filesystem

4.3 Implementation Details
The diagram showcasing the procedure for our LoRa OTA
protocol is showcased in Figure 5.
(1) First Row: Connect FiPy to Gateway
(a) The procedure for LoRa OTA starts at the top of the

diagram where the the FiPy device connects to the
gateway using LoRa Over the Air Authentication
(OTAA). LoRa OTAA initiates the join procedure
with a LoRaWAN network.

(b) TTS sends a join-accept to the Server - at this point
the device will be connected to the server. Addition-
ally, the join-accept request triggers the server into
segmenting the most recent firmware into chunks
of fixed length.

(2) Second Row: FiPy Initiates OTA, Server indexes most
recent Firmware File

(a) The device sends the OTA Trigger.
(b) From there, TTS will forward an uplink message

containing the OTA Trigger to the Server.
(c) The Server fetches the most recent Firmware (FW)

File and segments it to known chunk sizes, the Server
also gets the entire length of the FW.

(3) Third Row: Server Transmits FW Length
(a) The server initiates a downlink push containing the

FW Length.
(b) The FiPy will receive the FW Length.

(4) Fourth Row: FiPy Acknowledges Length
(a) The FiPy will either ACK or NACK the length mes-

sage. A NACK occurs in the event that the socket
times out.
(i) Note: The FWLength is used by the FiPy to contin-

uously receive and acknowledge Firmware chunks
sent by the Server "FW Length" times.

(b) The Server receives this ACK or NACK. If the FW
Length message was NACKed, retransmission of FW
Length occurs.

(i) Note:Retransmission is initiatedwhenever aNACK
is received by the Server.

(5) Fifth Row: Server Data Transfer
(a) The server initiates a downlink push containing a

segment of FW Data.
(b) The FiPy receives the segment of FW Data.

(6) Sixth Row: FiPy Acknowledges the FW Data
(a) FiPy wil either ACK or NACK the FW Data message.

A NACK occurs in the event that the socket times
out.

(b) The Server receives this ACK or NACK. If the FW
Data message was NACKed, retransmission of the
FW Length occurs.

The process in the last two rows is repeated "FW Message
Length" times the ensure the FiPy device receives the entire
FW. Once FW Transmission is complete, all the received
data is combined and written to the OTA partition on the
microcontroller - completing the LoRa OTA process.

5 SETUP CONFIGURATIONS
5.1 LoRa Socket
(1) LoRaWAN Mode - US-compliant bandwidth, channels

and frequencies. Zone: US915
(2) LoRa OTAA - Over the Air Authentication to join Lo-

RaWAN Network
(3) Blocking Set - device waits for packets to be received
(4) Socket Timeout - Varied for our experiments. Set

number of seconds for client to wait before initiating
retransmission procedure.

5.2 Data Segmentation
(1) Done entirely on the server.
(2) Chunk Size -Varied for our experiments. The length

of the FW Data in Bytes the server sends at a time.

6 RESULTS
We were able to transfer files from a webserver to a LoRa
device. We experimented with tuning certain LoRa/Server
Parameters. The summary of our results can be seen in Figure
6.

6.1 Experiments
We ran two experiments:

(1) The effect of changing the client-side socket-timeout
value on the total elapsed transmission time. (Rows
1-3 in Figure 6)

(2) The effect of changing the server-side chunk-size (Seg-
ment Size) on the total elapsed transmission time. (Rows
4-5 in Figure 6)

CS 219 Spring 2023, March–June, 2023, Los Angeles, CA Rasmus Henriksen, Zhi Li, Aditya Mishra, and Turan Vural

Figure 5: Diagram showcasing the sequential procedure enabling a cloud push for OTA updates to a LoRa device

Figure 6: Evaluation

We observed that increasing the client-side socket-timeout
value did ultimately increase the total transmission time.
We ultimately decided on a socket-timeout value of 10 sec-
onds because the marginal increase in transmission time
outweighed the potential retransmission that could result
from a shorter socket-timeout value.
We observed that increasing the server-side chunk-size

value significantly decreased the total transmission time.
This is expected as there are fewer total FW packets to trans-
mit from the Server to the Client. What is unexpected is the
elimination of retransmissions by increasing the chunk-size.
We expected an increase in chunk-size to increase retrans-
mission - we are unsure of why this occurs.

6.2 Power Consumption
Given that LoRa is meant to enable connectivity while main-
taining low-power operation, it is worth examining the over-
head of OTA updates. The limited maximum transmission
unit (MTU) makes updates longer than WiFi or cellular up-
dates with higher bandwidth. Thus, we examine the addi-
tional power consumption needed for the transmission of

Figure 7: Power Consumption

our test files. The results of our calculations can be found in
Figure 6. Power consumption is taken from [4], the FiPy spec-
sheet. To calculate power usage, we follow𝑇𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒 ∗
5 ∗𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , where TimeToUpdate is the time elapsed during
the update, 5 volts is the operating voltage, and current is the
current the usage of the device while updating or in sleep. To

IoT Device Firmware Update through Cloud Over-the-Air Interfaces CS 219 Spring 2023, March–June, 2023, Los Angeles, CA

calculate current while operating, we took the idle current
usage ID and added 23 mA, 23mA being an approximation
of LoRa usage in IDDT. To calculate the sleep current usage,
we use IDSL.

6.3 Persistent data
In certain scenarios, we witnessed the FiPy receive out of or-
der messages, duplicated messages, and messages on startup
that had been sent in a previous session. For example, we
have witnessed the FiPy "receive" messages even before the
webserver had been started. This erroneous behavior was a
challenge to reliable delivery of uncorrupted data. We were
not able to diagnose the issue, but given the behaviour of
messages from previous sessions being incorrectly received
by the board with no webserver running and no correspond-
ing logs in TTS to indicate messages in the downlink queue
being sent, we hypothesize that this is an issue with an on-
board buffer not being cleared on startup.

To minimize this issue, we clear buffers where we can on
startup and wait until the FiPy has a chance to clear any
lingering messages before bringing the webserver online
and performing the update. This approach was effective in
ensuring the correct transmission and reception of data.
A more comprehensive understanding of the buffer’s be-

havior and potential methods for clearing it would be benefi-
cial. Further investigation and experimentation are required
to verify or disprove our hypothesis and solve more reliable
transmission.

7 NEXT STEPS
(1) Experiment with LoRa’s confirmed mode. This would

help us attain better reliable delivery.
(2) Include sequence numbers in the FW Segments that

are transmitted from the Server. This would mitigate
the FiPy Buffer Problem.

(3) Further testing with additional tuning of the settings
we currently use. We attempted to do more testing but
were unable to due to time constraints.

(4) Experiment with compression of the firmware. Possi-
bly only transmit the diffs between FW files to mini-
mize transmission time.

(5) Write formal documentation for a general OTA proce-
dure. This does not exist and additional standardization
would make it easier for others to implement OTA for
other wireless protocols.

8 ACKNOWLEDGMENTS
We would like to express our thanks to our professor, Dr.
Songwu Lu, for teaching us the fundamental concepts that
allowed us to build the experimental solution that we did.
Thank you to our advisor, Dr. Zhaowei Tan, who provided

us with feedback and guidance as we learned the technology
stack necessary to make our solution work.
We express our gratitude to Dr. Lu and Dr. Tan for the

superb guidance on not just this project, but on this course
as a whole. We thoroughly enjoyed this course. We learned
valuable content that made us more interested in new con-
nectivity technologies. Our interest would not have been
possible without your engaging instruction.

9 REFERENCES
[1] “What Are Lora® and Lorawan®?” LoRa Developer Por-
tal, lora-developers.semtech.com/documentation/tech-papers-
and-guides/lora-and-lorawan/.
[2] Delgado, C. et al. 2020 "Battery-Less LoRaWAN Com-

munications using Energy Harvesting: Modeling and Char-
acterization" in IEEE Internet of Things Journal
[3] R. Sokullu, "LoRa Based Smart Agriculture Network,"

2022 8th International Conference on Energy Efficiency and
Agricultural Engineering (EE&AE), Ruse, Bulgaria, 2022, pp.
1-4, doi: 10.1109/EEAE53789.2022.9831210.

[4] Pycom, "Pycom Fipy Specsheets" Pycom Documenta-
tion, 2017, https://docs.pycom.io/gitbook/assets/specsheets/
Pycom_002_Specsheets_FiPy_v2.pdf.
[5]Pycom, "Pycom Fipy PinOut", Pycom Documentation,

2017, https://docs.pycom.io/gitbook/assets/fipy-pinout.pdf.
[6]RS Components. "Pycom Fipy Spec." RS Online Docu-

mentation, 2023, https://docs.rs-online.com/77c6/0900766b815d0a8d.
pdf.

[7] https://github.com/turanzv/CS219LoRaWANOTA

https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_FiPy_v2.pdf.
https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Specsheets_FiPy_v2.pdf.
https://docs.rs-online.com/77c6/0900766b815d0a8d.pdf.
https://docs.rs-online.com/77c6/0900766b815d0a8d.pdf.

	1 Introduction
	1.1 Over-the-Air Update (OTA)

	2 Background
	2.1 LoRa
	2.2 LoRaWAN
	2.3 The Things Stack

	3 Design
	3.1 LoRaWAN
	3.2 IEEE 802.11

	4 Implementation
	4.1 Feasibility of WiFi OTA Approach for LoRa OTA
	4.2 Implementation Architecture
	4.3 Implementation Details

	5 Setup Configurations
	5.1 LoRa Socket
	5.2 Data Segmentation

	6 Results
	6.1 Experiments
	6.2 Power Consumption
	6.3 Persistent data

	7 Next Steps
	8 Acknowledgments
	9 References

