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Abstract

Large Language Models (LLMs) have become essential tools for tackling a range
of tasks, displaying varied responses to different prompts even when addressing
the same challenge. This paper investigates the impact of five basic yet versatile
prompting strategies—zero-shot, few-shot, chain of thought, and one advanced
method, Tree of Thought (ToT)—on two key datasets: Game 24 and Crossword.
Our research reveals that while the state-of-the-art ToT strategy is effective on its
original LLM, it does not adapt well to smaller models like Vicuna-7b. A detailed
examination of ToT’s performance on these benchmark datasets uncovers two
major limitations, which we address with our novel method. Our approach not
only successfully resolves issues where ToT typically struggles, but it also operates
up to 5x faster. Additionally, we enhance the Vicuna-7b model’s capabilities by
integrating an image-to-text conversion tool, adding multi-modal functionality
to the model. Our code is open-sourced at https://github.com/milesway/
scientific_llm.

1 Introduction

The evolution of LLMs marks a significant milestone in the development of Natural Language
Techniques. These models, epitomized by their vast neural networks, are trained on enormous
datasets encompassing a wide spectrum of human language. A critical aspect of this training is the
incorporation of instruction-following capabilities. This is achieved by presenting the model with a
variety of task-oriented examples during training. These tasks can range from answering questions
and summarizing texts to more complex functions like translation or creative writing. The model
learns to understand and interpret instructions embedded in the input prompts, a skill that is crucial
for its practical applications [1]].

Prompt strategies for LLMs like GPT-3 or GPT-4 play a crucial role in how these models interpret
and respond to user requests [2H4]. One common strategy is the "zero-shot" learning approach, where
the model is given a task without any prior examples. This approach relies on the model’s built-in
knowledge and understanding gained during training. Another popular strategy is "few-shot" learning,
where the model is provided with a few examples to guide its response. This approach is particularly
effective for more specialized tasks, as it gives the model a clearer idea of the expected output format
or content. The "chain of thought" prompting is another innovative strategy, especially effective for
complex problem-solving. In this approach, the prompt is designed to encourage the model to "think
aloud," breaking down its reasoning process into intermediate steps before reaching a conclusion.
This mimics human problem-solving techniques, making the model’s responses more interpretable
and often more accurate. An advanced version of this is the "ToT" method, which allows the model
to explore multiple potential reasoning paths and evaluate different options before deciding on the
best course of action. This method is particularly beneficial for tasks requiring strategic thinking
and planning. These diverse prompting strategies enhance the versatility and effectiveness of LLMs,
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Figure 1: The Project Flow

enabling them to tackle a wide range of tasks from simple queries to complex problem-solving
scenarios. Although the aforementioned prompt strategies work well in general tasks such as general
Q&A and specialized tasks such as Game 24, they usually fail when the underlying LLM changes.
For example, when we change the underlying model of ToT from ChatGPT to Vicuna-7b, the success
rate on task Game 24 degrades significantly. After analyzing the model responses, we find out that
most of the errors originate from the fact that the smaller models cannot perform simple tasks well,
such as basic arithmetic operations or set intersection/union operations. Therefore, we propose to
enhance the ability of ToT by relying on a Python code interperter to perform these operations,
thus making it model independent. Through extensive empirical experiments, we show that our
method is able to solve Game 24 tasks effectively while ToT usually fails. During our experiment,
we also observe that ToT usually took a long time to finish despite that all the existing candidates are
invalid. Therefore we also trim the search space of ToT, making it 5x faster. For the crossword task,
we enhance the Vicuna-7b model with multi-modal capability by using a text-to-image converter.
With this improvement, users are able to get answers from the LLM by just inputting an image or
screenshot. To summarize, below are our contributions fig.[T]

1. We implemented 5 simple yet effective prompt strategies and tested them on Game 24,
Crossword, and GSM8K dataset.

2. We implemented 1 advanced prompt strategy: Tree-of-Thought and tested it on aforemen-
tioned datasets

3. Through extensive experiments, we identify the weakness of ToT and significantly improved
its success rate while making it 5x faster.

4. We also added multi-modality capability to the underlying model which enables LLMs to
solve crossword with just an image/screenshot.

2 Related Work

2.1 Large Language Models (LLMs)

Below are a few large language models we considered during the development of our method. We
choose Vicuna-7b for its best API support and instruction-following capability.

Llama-7b [5,16] stands for "Large Language Model - Meta Al 7 Billion parameters,” is a large
language model developed by Meta Al It’s a part of the LLaMA series of models, which includes
various sizes ranging from smaller to larger numbers of parameters.



Vicuna-7b is an open-source chatbot trained by fine-tuning the LLaMA model on user-shared
conversations collected from ShareGPT. It is a 7B parameter model, which makes it relatively small
and lightweight compared to other language models. Despite its size, Vicuna-7b has been shown to
be capable of carrying on engaging and informative conversations.

Alpaca-7b [7,18] is a model fine-tuned from the LLaMA 7B model on 52K instruction-following
demonstrations. It is designed to be a strong and replicable instruction-following model, and is
capable of performing a variety of tasks, including generating different creative text formats of text
content, like poems, code, scripts, musical pieces, email, letters, etc.

2.2 Prompt Strategy

Different prompt strategies are shown to further exploit LLM’s capabilitie when dealing with
different tasks. Below are a few selected simple prompt strategies that are commonly used to solve
various tasks. More details are shown in sections 3.2]and

Zero-Shot Prompt is a prompt strategy that the model is presented with a task it has never explicitly
seen during training and is expected to complete it without any examples. This approach tests the
model’s ability to generalize to new tasks. For example, you might ask a model to translate sentences
into other languages or answer a complex question without providing prior examples.

Few-Shot Prompt involves providing the model with a small number of examples (usually one to a
few) to demonstrate the task at hand. This helps the model understand the context and the specific
requirements of the task. For instance, if you want the model to write poems in a certain style, you
might provide a few examples of similar poems.

Chain of Thought Prompt [9, 10] involves prompting the model to "think aloud" or step through
its reasoning process explicitly. When asked a complex question, the model is prompted to break
down the problem into smaller parts, reason through these parts step by step, and then arrive at a
conclusion. This method is particularly useful for complex problem-solving tasks, like mathematics
or logic puzzles, as it helps the model organize and communicate its thought process more clearly.

3 Methodology

3.1 Milestone 1: Naive Prompting

The initial milestone of our study focused on evaluating the inference capacity of the Vicuna-7b
model in solving the Game 24, a task that entails constructing an equation that equals 24 using a
given set of four numbers each exactly once. This task was chosen for its simplicity and clarity in
testing the model’s basic computational abilities.

We selected a dataset comprising 1,362 puzzles from 4nums.com, chosen for their solvability without
requiring complex mathematical operations like square roots or factorials. This selection aimed to
present the model with straightforward yet diverse arithmetic challenges.

3.1.1 Simple Prompts

The outcomes of this phase were unexpected. Our LLM achieved a success rate of 0%, indicating
a profound disconnect between its operational capabilities and the task requirements. Several key
observations were made:

Misinterpretation of Prompts: The model encountered notable difficulties in interpreting prompts
that were simply composed of four numbers. This issue often led to misunderstandings, causing the
model to generate responses that diverged significantly from the intended question.

Text Completion Bias: In spite of being fine-tuned to follow instructions, the model showed a
tendency to produce responses in line with text continuation patterns, moving away from the specific
requirements of the arithmetic task. Table [I] showcases the example of naive prompts and the
corresponding disarrayed responses, highlighting the model’s inclination towards pattern generation
rather than logical reasoning.



Irrelevant Responses: The model frequently produced outputs that were unrelated to the task,
including responses in various languages and even programming code, highlighting its struggle to
stay on topic and understand the task’s objectives. Table[T]also shows the example of generating a
Python code clips that has the patterned numbers as input, but still irrelevant to solve the task.

Prompt: 35711

Response: 1317 19
2.681014 162022
3.57913151921
4.46812141820
5.35711131719

Prompt: 12810

Response:

X _train = np.array ([[latent_var]])

Y _train = np.array ([[1], [2], [8], [10], [16]])

def fit(self, X, y, batch_size=32, epochs=10):
self .build ((X.shape[1], X.shape[2]))
model . fit (X, y)

Table 1: Naive prompt — example of a simple prompt where contains only 4 numbers.

3.1.2 Straight Prompts

A more alarming observation was the model’s consistent failure, with success rate of 0%, to process
and act upon clear and explicit instructions, like Table 2] It showcases its inability to process and act
upon clear, explicit instructions. Presented with the task of forming an equation from the numbers
1, 3, 10, and 10 to achieve the sum of 24, the model’s response began promisingly, suggesting a
possible equation. However, this initial competence quickly unraveled into confusion, with the model
requesting further guidance, indicative of its struggle to comprehend and execute the task fully.

Prompt: use 1 3 10 10 each exactly once to find a valid equation that equals 24

Response: 10 10 3 4. obviously, the equation would be (1+10)(10-3)(10+4) =24
I’m sorry, but I don’t understand how to use that method to solve this
problem. Can you please provide more details or a step by step guide
on how to do it?

Table 2: Naive prompt — example of a straight prompt using natural language for task requirement.

3.2 Milestone 2 - 1: Implement 5 Prompt Strategy

In this milestone, we first implement 5 prompt strategy. Compare to advanced prompt strategy, they
usualy have a better generability which are described as following:

Zero Shot Prompt This is similar to the prompt strategy we used in milestone 1 where the LLM is
simply instructed to finish the task without any examples. For example, for game24, the prompt can
be as following "Use basic arithmetic operations (+ - */) to obtain 24 from the following 4 numbers.
Input 4, 5, 6, 10.". The model has to understand the prompt and finish the task.

Few Shot Prompt In this prompt, the model is given more information than just a simple instruction.
The extra information usually comes from some example tasks. One such example prompt can be
"Use basic arithmetic operations (+ - */) to obtain 24 from the following 4 numbers . Input: 4, 4, 6,
8. Answer: (4 + 8) *(6-4) = 24. Input: 2 9 10 12. Answer: 2 * 12 *(10 - 9) = 24. Input: 4, 5, 6,
10". Since the model is given more information such as the steps to solve some example questions,
the model usualy performs much better than the simple zero-shot prompt.
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Figure 2: ToT with Vicuna-7b fails on basic arithmetic operation

Chain of Thought Prompt It is a prompt strategy that aims to exploit the computation capability
of LLMs. The biggest difference between CoT and the prompt strategy before is that the LLM is
instructed to think step by step. One example prompt could be "Use basic arithmetic operations (+ -
*/) to obtain 24 from the following 4 numbers step by step. For each step, you are only allowed to
choose two of the remaining numbers to obtain a new number. Input: 4, 5, 6, 10"

Few Shot Chain of Thought Prompt Few shot CoT is an enhanced version of CoT. Besides
showing the results step by step, the LLM is also given more information to better solve the task. One
example prompt strategy is "Use basic arithmetic operations (+ - */) to obtain 24 from the following
4 numbers. For each step, you are only allowed to choose two of the remaining numbers to obtain a
new number. Input: 4, 4, 6, 8. Answer: 4 +8=12. 6 -4=2.2*%[2=24. Input: 4, 5, 6, 10. "

Recall History Example Prompt It is a different prompt strategy than the ones we show before. It
bases on the fact that LLM has seen similar questions before since it’s trained on large scale corpus
and thus it will be able to provide a better solution by relying on the examples it has seen before.
One example prompt strategy can be "Recall a similar example you saw before and apply similar
approaches to solve the problem below. Use basic arithmetic operations (+ - */) to obtain 24 from
the following 4 numbers Input: 4, 6, 8, 10.”

3.3 Milestone 2 - 2: Implement 1 Advanced Prompt Strategy (ToT)

Tree of Thoughts (TOT) is an advanced method that builds upon the "Chain of Thought" concept [9]],
facilitating deeper and more structured reasoning by the LM.

At its core, ToT constructs a decision tree where each node represents a "thought" or an intermediate
step in the reasoning process. The algorithm begins by generating an initial set of thoughts based on
the input problem. These thoughts are not final solutions but rather plausible reasoning steps that
guide the model towards a solution.

To navigate through these thoughts, ToT employs two search strategies: Breadth-First Search (BFS)
and Depth-First Search (DFS). BES explores the tree level by level, considering all thoughts at a given
depth before moving deeper. In contrast, DFS delves into one path to its end before backtracking and
exploring alternative paths. This dual approach allows the model to thoroughly examine different
reasoning trajectories, ensuring a comprehensive exploration of the solution space.

Each thought is evaluated against a set of criteria, including relevance, logical consistency, and
alignment with the problem’s context. The algorithm retains only those paths that meet a predefined
performance threshold, discarding less promising or irrelevant thoughts. Through this iterative
process of generation, exploration, and evaluation, the ToT algorithm guides the LM towards the
most logical and coherent solution, significantly enhancing its problem-solving abilities.

3.4 Milestone 3 Improvement 1: Improve Tree of Thought

As mentioned before, ToT doesn’t generalize well when the model becomes smaller. It makes
mistakes even on simple arithmetic operations as shown in fig. [2] It’s also not able to perform
basic set operations such as set intersection or union which can be seen in[3] Besides these two
circumstance, ToT also generates too many invalid candidates. For example, the LLM sometimes
picks candidate numbers from the remaining set that don’t exist at all. Thus even if it’s able to
construct 24 from the numbers, that solution is invalid. Plus generating and searching on these invalid
candaites consumes lots of computational resources which should be trimmed early. Also, as ToT
uses the same model for evaluating the generated candidates, if the model itself doesn’t perform well,
ToT is very easy to break. For example, in fig. |4} there are identical candidates marked with yellow
and red, however, the model gives different values for them which makes ToT unstable. Plus, LLMs
inevitably has randomness with itself, making such situation even more challenging.
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Figure 4: Unstable evaluation of ToT from using the same LLM for assessing its candidates.

Therefore, we propose to employ code interpreter to enhance its capability on aforementioned tasks
and trim invalid candidates early. Please refer to fig. [5|for a simple visualization of our method.

Original ToT . Our ToT :
| 5-47 » 5-47 JS_M code )
! deep thinking | ! ToT [ 7| Vicuna-7B [Interpreter J:
B v ‘ i

Figure 5: Original ToT (left) compared with our enhanced ToT (right).

3.5 Milestone 3 Improvement 2: Support Multi-Modality

For this improvement, we utilize a text-to-image converter to enhance the Vicuna-7b model with
multi-modality capability and show the result in fig. [6] The text-to-image is an OCR module that
recognizes the texts on an image and we use the recognized texts as the input to the underlying LLM.

4 Results

4.1 Experiment Setup

The study was structured into several distinct stages, as outlined in our project flow chart in fig. [T}
It was organized into three key milestones: Milestone 1 Initially, after a thorough review and
comprehension of seminal Large Language Model (LLM) research, we evaluated a selected small-
scale LLM using a dataset comprised of scientific problems. This step established our baseline
model for subsequent comparisons. Milestone 2 This phase involved experimenting with various
prompting strategies, over five different approaches, to gauge the LLM’s responsiveness to these
prompts. Additionally, we adopted an advanced prompting technique and selected a different dataset
to evaluate the effectiveness of both the baseline and the prompted models. Milestone 3 The final
stage of our study focused on identifying and addressing challenges related to our prompting strategies.
This involved pinpointing at least one limitation of the implemented prompting approach, followed
by the proposal and execution of an innovative modification to overcome the identified issue(s).
Moreover, we expanded the capabilities of text-based LLMs by incorporating multimodal features,
using an image-to-text model to transform visual inputs into textual embeddings for enhanced
problem-solving proficiency.

In greater detail, our research focused on enhancing the Vicuna-7b-v1.5 model, utilizing it with both
the Game of 24 and crossword datasets. Both the Game of 24 and crossword datasets are accessible
through https://github.com/princeton-nlp/tree-of-thought-1llm/tree/master/src/
tot/data, allowing for transparency and reproducibility of our research.
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Figure 6: Adding multi-modal capability to LLM which only supports text.

4.2 Results for milestone 1

Despite being presented with the relatively straightforward Game 24 task, the model consistently
failed to generate correct solutions, achieving a low success rate of 0%. This was primarily due to its
inability to correctly interpret even simple numerical prompts and its tendency to default to unrelated
text completion, often generating arbitrary and irrelevant responses. Moreover, even when given
clearer, more direct instructions, the model struggled to comprehend and execute the tasks accurately.

4.3 Results for milestone 2 & 3

As mentioned before, due to the capability of Vicuna-7b model, our 5 implemented simple prompt
strategies don’t work well. For example, for game 24, the model will take random numbers from the
provided numbers and do the arithmetic operation wrong, thus resulting in 0% accuracy. Even for
ToT, the result accuracy is close to O for similar reasons. For Crossword task, the model performs
slightly better than game 24. However, the model usually generates a word that has more than 5
words which violates the requirement of crossword. Therefore even if the model’s response to some
part of crossword is correct, the final result is wrong for violating the game rule. Next, we show the
result of our method while comparing it to the original ToT in fig.[7] It can be seen that after applying
our proposed improvement, the candidates ToT generates have the correct arithmetic operations and
set operations, achieving a higher chance of success. We evaluate our results on the test set of Game
24, results show that the success rate of ToT increases from 0% to around 5% (results are achieved
by setting the initial candidate number to 5). Note that after our fix, the reason why ToT still fails
for some cases is because the initial candidates ToT selects cannot guarantee that it will find the
correct solution. If the initial candidates are incorrect, the algorithm will fail. We leave the work
of finding better initial candidates to future work. For the results of crossword, the text-to-image
converter we added is able to recognize the input most of the time. Since the improvement is on
multi-modality instead of the LLM itself, the success rate remains the same. However, now it’s able
to solve problems from image input.

5 Discussion

During the model processing phase, we encountered a series of challenges that spanned model
selection, performance optimization, and GPU runtime considerations.

5.1 Model & Dataset Selection

The initial hurdle involved selecting an appropriate model and dataset for implementation. From a
list of suggested models (Flacon-7b, LLaMA-7b, Alpaca-7b, Vicuna-7b, Fastchat-t5-3b), we chose
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Figure 7: Example task on Game 24 using our method which generates the correct answer after 3
steps while being 5x faster than the original ToT.

LLaMA-7b as our baseline model. However, when running the GSM8K dataset on it, we faced
difficulties implementing advanced prompt strategies. We intended to use techniques like Reflextion
or Tree of Thought to improve the LLaMa2 baseline model. Unfortunately, the original LLaMa
fails to follow instructions most of the time. Consequently, we shifted our focus to the Vicuna-7b
model, which proved more adaptable to prompt adjustments and user instructions, providing cleaner
responses for accurate output evaluation.

5.2 Model Performance

The second challenge centered around model performance. Despite selecting Vicuna-7b-v1.5 as
our baseline model, its small size led to suboptimal performance. This contradicted the common
assumption that advanced prompt strategies enhance a well-performing baseline model. The lackluster
results, particularly on tasks like Game24 and Crossword, highlighted the need for meticulous
enhancements to elevate the model’s capabilities.

5.3 GPU Runtime

Furthermore, addressing GPU runtime constraints proved to be a significant hurdle. Initial attempts
on Google Colab, with its 12GB RAM limitation, resulted in code termination when applying the
smaller-sized Vicuna-7b to datasets Game24, Text, and Crossword separately. Recognizing the
severity of this challenge, we transitioned to leveraging local GPUs in our lab, addressing runtime
limitations and enabling a more comprehensive exploration of the datasets. This transition unveiled
additional nuances, guiding our subsequent model adjustments.

6 Conclusion

In summary, our research has been dedicated to advancing the Vicuna-7b model, emphasizing the
implementation of advanced prompt strategies for performance enhancement. Substantial improve-
ments were introduced to the Tree of Thought searching algorithm, coupled with the integration of
the trim and fix-left function, contributing to the overall optimization of the model. We underscore our
commitment to user interaction by incorporating an image converter, facilitating the transformation
of visual input into text and expanding the model’s versatility. We leave more improvements such as
generating better initial candidates as mentioned in section to future work.
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Appendices

Project Development

Initially, we focused on establishing a baseline. This was achieved by assessing the Vicuna-7b-v1.5
and Llama-2-7b models’ performance on the Game of 24 and GSM8k. |GSMS8K  consists of 8.5K
high-quality grade school math problems created by human problem writers. These problems take
between 2 and 8 steps to solve, and solutions primarily involve performing a sequence of elementary
calculations using basic arithmetic operations (+ - / *) to reach the final answer. A bright middle
school student should be able to solve every problem. Game of 24 is a mathematical puzzle that
requires formulating combinations of numbers to reach the value of 24. This initial assessment
provided us with a reference point against which we could measure the effectiveness of subsequent
prompting strategies.

Following the baseline establishment, our next step involved experimenting with various prompting
strategies, particularly focusing on the ToT technique. Because of the better capability of Vicuna-7b,
in the following steps, the study focused on implementing the experiment with Vicuna-7b instead of
Llama-2-7b. In our application, Vicuna-7b-v1.5 generated multiple 'thoughts’ or reasoning paths at
each step. These paths were then explored in either a BFS or DFS order. The model evaluated all
candidates and retained those that surpassed our predefined performance threshold.

In addition to the Game of 24 dataset, our study also incorporated the evaluation of the Vicuna-7b-
v1.5 model on a mini crossword dataset. This was aimed at assessing and improving the model’s
performance in a different context. The crossword dataset provided a unique challenge, testing the
model’s ability to handle linguistic and contextual cues.

The final stage of our project involved a thorough analysis of the challenges encountered during the
application of the ToT and other prompting strategies. We improved the model’s performance on
both Game of 24 and crossword datasets, respectively.

Overall, our methodology was structured to not only assess the current capabilities of the Vicuna-
7b-v1.5 model but also to explore advanced prompting strategies that could significantly improve its
problem-solving proficiency.
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